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Regions within the medial temporal lobe and basal ganglia are thought to subserve distinct memory systems
underlying declarative and nondeclarative processes, respectively. One question of interest is how these
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in the VTA fire in response to this novel information, releasing







extent of 7 voxels for the observation maps and 8 voxels for the
feedback maps (correcting to a cluster level false positive rate of 5%).
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Bonferroni correction), but no differences were observed for obser-
vation performance (t(15) =1.04; pN0.05). As expected, participants'
performance in the novel condition did not differ over time (t(15) =
1.01; pN0.05).

During the individual test phases, no differences between feedback
and observation trials or between easy and hard cues were observed.
In the immediate test phase, for example, a 2 (learning type:
observation vs. feedback)×2 (cue difficulty: easy vs. hard) repeated
measures ANOVA was performed to examine differences in accuracy
between learning types and the level of cue difficulty (excluding the
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The same 2×2×2 repeated measures ANOVA was conducted on the
mean BOLD signal from the hippocampus ROI and revealed a trend
towards a main effect of learning type (F(1,15)=3.36; ; p=0.09), a main
effect of cue difficulty (F(1,15)=20.69; pb0.01), a main effect of time
(F(1,15)=5.35; ; pb0.05), and a trend towards a significant interaction
between learning type and time (F(1,15)=3.76; ; pb0.07). Post hoc
comparisons revealed a nearly significant increase for the feedback hard
cues in the hippocampus as learning progressed (t(15)=2.38; p=0.03;
trend after sequential Bonferroni correction; Supplementary Fig. 1B).

Learning phase: Main effect of learning type
From the same learning type×cue difficulty ANOVA, a main effect

of learning type was examined (Supplementary Table 2). This analysis
revealed activation in different regions of the basal ganglia, specifi-
cally the right ventral portion of the head of the caudate nucleus (x, y,
z=6, 3, 4) and the left ventral caudate nucleus extending into the
globus pallidus (x, y, z=−12, 2, 4; Supplementary Fig. 2). No
differences with respect to cue difficulty were observed in these ROIs.
At the threshold of pb0.005, no voxels within the hippocampus were
observed.

Learning phase: interaction of cue difficulty and learning type
An investigation of the interaction between learning type and cue

difficulty from the ANOVA revealed activation in an area of the left
medial prefrontal cortex. Post hoc t tests conducted on the mean
parameter estimates extracted from this region indicated greater
activity for observation easy compared to hard trials (t(15)=4.63;
pb0.025); but no differences in difficulty for the feedback trials (t(15)=
1.26; pN0.05). The interaction is driven by a greater BOLD response to
observation compared to feedback easy cues (t(15)=2.72; pb0.025) and
a trend towards a greater response to feedback than observation hard
cues (t(15)=1.94; p=0.07).

Test phase
In the test phase, contrasting studied (observation and feedback

cues) versus non-studied (novel cues) information was used to
identify ROIs involved in memory processes triggered by cue
presentation (Supplementary Table 3). This contrast produced one
active region within the medial temporal lobe—the parahippocampal
gyrus (x, y, z=−21, −40, −8; Supplementary Fig. 3A and B). Post hoc
t tests on the mean parameter estimates extracted from the
parahippocampal ROI revealed no significant difference between
observation and feedback cues (t(15)=0.37; pN0.05). Regions of
interest just outside the hippocampus (x, y, z=−24, −22, −5), and
the right caudate nucleus (x, y, z=6, 5, 16) were also observed in this
contrast, but did not survive correction at the cluster level.

Correlations within the neuroimaging data
We performed a series of Pearson's correlations to explore the

relationship between the caudate nucleus and hippocampus during
the learning phase. We observed a significant positive correlation
between mean parameter estimates from the caudate nucleus and
hippocampus ROIs extracted from the main effect of cue difficulty
analysis during the observation learning session (r=0.498, p=0.05)
(Supplementary Fig. 4A). While a similar result was not apparent
during the feedback session, a trend towards a positive correlation
between the caudate nucleus and hippocampus was observed during
later stages of feedback learning, specifically during easy cue trials
when participants’ expectations were violated by the delivery of
incorrect feedback (r=0.530, p=0.08) (Supplementary Fig. 4B).

Granger causality analysis
To more effectively assess the level of connectivity between the

hippocampus and striatum during probabilistic learning, we con-
ducted a Granger causality analysis. This analysis examined functional
connectivity in the brain using the left hippocampus from the main
effect of cue difficulty analysis as the principle seed region. The
resulting Granger causality maps highlight correlations between the
hippocampus (seed region) and regions of the striatum during both
feedback and observation probabilistic learning sessions. Specifically,
this analysis yielded instantaneous influence between the hippocam-
pus and two regions of the right caudate nucleus during feedback
learning (x, y, z=14, 18, 13) and (x, y, z=14, 12, 19; not shown), as
well as nearly the identical ROIs in the caudate nucleus (x, y, z=14,
18, 13) and (x, y, z=14, 10, 18; not shown) and one region of the right
ventral putamen during observation learning (x, y, z=22, 3, −4; not
shown) (Fig. 4). The second Granger causality analysis performed as a
control using the caudate nucleus as the seed region revealed
instantaneous influence between the caudate nucleus and bilateral
hippocampal regions during observation learning (x, y, z=−31, −38,
−3 and x, y, z=32, −29, −12; not shown; corrected to a cluster level
false positive rate of 5%; Supplementary Fig. 5A) as well as a loci near
the right hippocampus during feedback learning (x, y, z=29, −8,
−15; uncorrected for multiple comparisons; Supplementary Fig. 5B).

Prediction error analysis
Midbrain dopaminergic neurons are believed to project to both the

striatum and the hippocampus (Lynd-Balta and Haber, 1994; Scatton
et al., 1980
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interaction may potentially be explained by dopaminergic modulation
during reward related learning (Lisman and Grace, 2005; Shohamy
et al., 2008) as both BG and MTL ROIs were found to correlate with a
prediction error signal, further corroborating the hypothesis that these
distinct memory systems interact in a parallel manner while processing
probabilistic information to facilitate goal directed behavior.

image of Fig.�4
image of Fig.�5


an uncorrected level should be regarded with caution when
interpreting the results due to the increased likelihood of producing
a Type I error (Poldrack et al., 2008).

The major differences between the feedback and observation
versions of our task were outlined the Materials and methods section.
Despite their differences, however, the two learning sessions share
the common goal of learning the value of probabilistic cues. Thus,
participants may engage in a variety of cognitive strategies in order to
facilitate successful performance. As learning progresses over time in
the feedback session, for instance, it is possible that participants
employ a more declarative based cued recall strategy during the cue
phase. Participants may also use verbal rehearsal strategies during the
learning phase, irrespective of the task version. Research examining
how participants solve another probabilistic learning task, the
Weather Prediction Task (WPT), may shed some insight into possible
declarative and nondeclarative components of category learning tasks
as well as the knowledge that participants may have during these
types of learning tasks (Gluck et al., 2002; Meeter et al., 2006). A
relatively recent study by Newell et al. (2007) found that participants
had comparable declarative knowledge on a feedback and observation
version of the WPT. The authors argue therefore, that the feedback
version of the WPT may not be an exclusively nondeclarative task.
Meeter et al. (2008) have suggested that participants may solve the
WPT via engagement of rule-learning, incremental learning (both of
which are thought to engage the BG), memorization techniques (MTL
dependent), or some combination of these three strategies. Further-
more, Shohamy et al. (2004) suggest that participants most likely
recruit multiple parallel learning systems to solve probabilistic
categorization tasks. It is quite possible that both observation and
feedback versions of our task contain some declarative and non-
declarative components. Therefore, the use of the terms declarative
and nondeclarative in this text are meant as a reference, and not
meant to suggest the sole manner in which participants may solve the
tasks.

The possibility that our tasks contain elements of declarative and
nondeclarative learning features may contribute to the main result
that the hippocampus and striatum are involved in both feedback and
observation learning—primarily being modified by cue difficulty,
rather than learning type. It is possible that the involvement of
multiple cognitive operations (e.g., cued recall or rehearsal strategies)
is facilitating the mutual engagement of these regions, irrespective of
learning type. One limitation of the current study is that this
possibility cannot be definitively ruled out. Future studies may be
able to better parse out the possible contributions that multiple
cognitive processes have on these tasks and the subsequent neural
signals in the MTL and BG.

The significance of the possibly synergistic interaction between BG
and MTL during learning is still unclear. One hypothesis is that these
regions cooperate in certain contexts to process new information that
is conflicting with previous expectations in order to promote flexible
learning and behavior (Packard and McGaugh, 1996). Although our
current paradigm does not allow for direct examination of this idea,
there is some indirect support from our prediction error analysis. A
prediction error occurs when the actual outcome to an event differs
from the expected outcome. In our paradigm, both the hippocampus
and the striatum were involved in processing this error signal. This
corroborates the hypothesis that these regions may be operating in
parallel and perhaps interacting with each other in a synergistic
manner during situations when learning requires more effort or
contains conflicting information. This idea is indirectly supported by a
relatively recent human fMRI study examining route recognition in
Huntington's disease patients (Voermans et al., 2004). In this study,
increases in hippocampus activity were attributed to compensatory
mechanisms due to degrading striatal function in patients, leading the
authors to postulate a noncompetitive interactive relationship
between the BG and MTL during route recognition.
Consideration for the anatomical connectivity between regions in
the BG and MTL may also be helpful in determining their functional
relationship during learning. One recent hypothesis about interactive
communications across the striatum and the hippocampus specifical-



differences were also apparent. First, only regions within the basal
ganglia were modified by a main effect of learning type, while no voxels
were identified in the MTL showing such differentiation. Several
neuroimaging papers have shown that feedback and reward processing
recruit ventromedial regions of the striatum (for review see Delgado,
2007), thus, it is not surprising that this region was recruited more
strongly during the feedback learning trials. It may have been expected
that the MTL would be selectively modulated by the observation version
given previous results (Poldrack et al., 2001); however we did not
observe this. While a null result in neuroimaging is not indicative of any
particular finding per se and the context and details of our paradigm
differ from previous probabilistic learning studies, it is possible that MTL
BOLD signals within our paradigm are recruited during both feedback
and observation learning–as suggested by the main effect of difficulty
analysis–to contribute to overall learning. A second difference which
emerged between the hippocampus and caudate nucleus was that the
hippocampus showed a main effect of time (early×late learning) during
the learning session, whereas caudate nucleus responses were not
significant. This effect was driven primarily by activity during feedback
learning (primarily for the hard cues), which was greater during late
compared to early stages of learning in the hippocampus. This result
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